Hero Image
Department of Chemical Engineering

Photonics and Plasmonics Nanoresearch Laboratory

Welcome!

Research Team image

我们小组的研究兴趣围绕着旋光性的发展而发展 纳米结构如等离子体纳米粒子的应用范围不同 from the detection of biomolecules to solar energy conversion. Plasmonic nanoparticles can strongly enhance local electromagnetic field; and their ability to concentrate light in the nanoscale have found a broad range of applications. Presently, our research 小组重点关注两个具体领域:(1)开发高效光热材料 哪一种可以将光转化为热,用于不同的应用,如太阳能介质 催化,太阳能增强水蒸发和聚合物光热回收. (1)发展等离子体材料,在纳米尺度上有效地集中光 to drive energy-expensive reactions. Our group uses both experimental and theoretical 工具,以获得光学和电子性质的基本理解 of different plasmonic nanoparticles. We particularly focus on the development of 可替代传统等离子体材料的等离子体纳米材料 such as gold and silver. We are studying refractory plasmonic nanomaterials such as titanium nitride nanomaterials for efficient conversion of light into other forms of energies such as thermal, chemical, and electrical energy. Additionally, we study bimetallic plasmonic nanoparticles. The possibility to control and tune optical properties 双金属等离子体材料在发展中具有重要意义 不同的应用,如等离子体增强催化和聚合物回收 and additive manufacturing.

Research Highlights

难熔等离子体过渡金属氮化纳米颗粒作为过渡载体 Metal Catalysts

Refractory Plasmonic Transition diagram 1

我们发现过渡金属酞菁之间有很强的电子相互作用 (TMPc 's)在难熔过渡金属氮化支撑,特别是铜酞菁 (CuPc) on titanium nitride (TiN). X-ray Photoelectron Spectroscopy (XPS), photoelectron 给出了发射显微镜(PEEM)和密度泛函理论(DFT)的计算方法 to support our observation. Interestngly, presence of a few nanometer native oxide 由TiN、TiO2和Titanium组成的TiN纳米颗粒表面的一层 氮氧化物(TixOyNz)不影响TiN和TiN之间电荷转移的性质 CuPc. 然而,在光电子发射显微镜之间发现了实质性的偏差 (PEEM) measured work function for TiN (4.68 eV) and theoretically calculated work function for pristine stoichiometric TiN (2.63 eV) due to the presence of an oxide layer on the TiN surface. Our studies open up an opportunity to apply a new class 基于过渡金属酞菁/过渡金属氮化物复合材料 to catalysis and optoelectronic devices. (Applied Surface Science 614 (2023) 156204)

Refractory Plasmonic Transition diagram 2

我们成功地在耐火材料上沉积了过渡金属催化剂镍和铂 利用可见光诱导等离子体激元制备等离子体氮化钛纳米颗粒 enhanced deposition method. The catalytic properties of the transition metal catalysts 用可见光介导的碳酸氢盐来证明TiN支撑 formate reduction reaction in the presence of glycerol as the hole-scavenger. The 本研究结果可用于合成稳定高效的可见光响应材料 等离子体复合催化剂采用温和的反应条件,可加速反应 different energy extensive reactions using light. (Materials Research Bulletin 152 (2022) 111834)

 

Refractory plasmonic nanomaterials assisted recyling of thermosets

Polymerization Image

热固性聚合物,如环氧树脂,是一类重要的聚合物 广泛应用于结构材料、电子封装、 and adhesives. These thermosetting polymers are known for their stable thermomechanical properties and excellent chemical resistance. However, these thermosetting polymeric 由于不可逆的交联,材料本质上是不可回收的 network structure. Our research group is working on developing recyclable thermoset 利用太阳能光解聚可以很容易地回收聚合物 energy efficiently. To accomplish this we are developing thermo-reversible epoxy/ refractory plasmonic titanium nitride composites. The well-dispersed plasmonic nanomaterials 在环氧树脂基体中可以充当局部热源,将光转换成 localized heat efficiently rapidly to trigger the depolymerization. (Recently accepted manuscript, 2022, ACS Applied Polymer Materials)

Relaxation Dynamics Studies of Plasmonic Composites

 res2

研究了由等离子体纳米粒子组成的双金属纳米粒子的光学性质 such as gold and catalyst such as nickel and platinum. We applied ultrafast time-resolved 光谱学用于检查不同等离子体脱相途径的速率,例如 电子-电子散射,电子-声子耦合,声子-声子散射. 我们发现了双金属等离子体的光吸收和弛豫动力学 catalysts can be tuned by tuning their composition. Developing photothermal catalysts 结合等离子体纳米粒子与催化金属扩展等离子体的好处 纳米粒子对任何由这些催化剂加速的高耗能工业过程的影响. (Nanoscale, 2020,12, 10284-10291)

 

Plasmon enhanced catalysis

 res3

具有高温稳定性强、表面等离子体共振能力强等特点 吸收过渡金属氮化物的可见光到近红外光的广谱光谱 如氮化钛(TiN),激发了我们对这些材料进行光催化研究 reactions. We showed an efficient photocatalytic reduction of bicarbonate on TiN and TiO2/TiN composite nanocatalysts under solar light illumination. TiN nanoparticles, in 与二氧化钛(TiO2)的结合显著增强了纳米结构 用甘油作为孔洞清除剂,光还原碳酸氢盐生成甲酸盐. 有趣的是,我们发现TiN纳米颗粒单独也可以表现为优异的 plasmonic catalyst. Moreover, TiN nanoparticles remain stable under reaction conditions (high pH) for extended periods of solar light exposure re (8 hours). (Solar Energy Materials and Solar Cells, 2019,200, 109967)

 res5

等离子体纳米粒子表面的强电磁场如 利用金和银来操纵分子的能量和电子吸收 photocatalyst such as TiO2 or copper(I) oxide. We reported the efficient production of formic acid through simultaneous 碳酸氢盐的光还原和复合物存在下甘油的氧化 catalyst comprised of the plasmonic and the photocatalyst nanoparticles. (Journal of CO2 Utilization, 2017,22, 117-123; ACS Sustainable Chemistry & Engineering, 2018, 6, 1872-1880)

 res6

PDMS海绵是一种适合于选择性吸收油脂和有机溶剂的基质 从水和可以弹性变形成任何形状,并可以反复压缩 in air or liquids without collapsing enabling excellent recyclability. We enhanced 这些海绵通过加入纳米催化剂使其适合于光催化 并具有抗菌活性,因此在环境方面有潜在的应用前景. (Journal of water process engineering, 2018, 24, 74-82)

 res8

Two-dimensional layered nanomaterials such as molybdenum disulphide (MoS2纳米材料具有光学活性,在光催化方面具有潜在的应用前景. 我们操纵了单层二硫化钼的电子和光学性质 用钛基等大环有机金属分子进行非取代掺杂 phthalocyanine (TiOPc) or copper phthalocyanine (CuPc). The implication of the results 讨论了它们在重要反应中的适用性,比如析氢 by water dissociation. (J. Phys. Chem. C 2017, 121, 5, 2959–2967)

 

Funding and other resources

U.S. Department of Energy image ACS PRF image             Private Industry

 

SNL LANL and CIN image